Lipid-binding and antimicrobial properties of synthetic peptides of bovine apolipoprotein A-II.
نویسندگان
چکیده
We previously showed that bovine apolipoprotein A-II (apoA-II) had antimicrobial activity against Escherichia coli and the yeast Saccharomyces cerevisiae in PBS. We have characterized here the active domain of apoA-II using synthetic peptides. A peptide corresponding to C-terminal residues Leu(49)-Thr(76) exhibited significant antimicrobial activity against E. coli in PBS, but not against S. cerevisiae. Experiments using amino-acid-substituted peptides indicated that the residues Phe(52)-Phe(53)-Lys(54)-Lys(55) are required for the activity. Peptide Leu(49)-Thr(76) induced the release of calcein trapped inside the vesicles whose lipid composition resembles that of E. coli membrane, suggesting that peptide Leu(49)-Thr(76) can destabilize the E. coli membrane. CD measurements showed that the alpha-helicity of peptide Leu(49)-Thr(76) increased from 3.5 to 36% by addition of the vesicles. When E. coli cells were incubated with peptide Leu(49)-Thr(76), some proteins were released to the external medium, probably owing to membrane destabilization caused by the peptide. In electron micrographs of E. coli cells treated with peptide Leu(49)-Thr(76), transparent nucleoids and granulated cytoplasm were observed. Amino acid substitutions, Phe(52)Phe(53)-->AlaAla (Phe(52, 53)-->Ala) in peptide Leu(49)-Thr(76) caused the loss of antimicrobial activity against E. coli, although protein-releasing activity was retained. Electron micrographs of the cells treated with peptide Leu(49)-Thr(76)(Phe(52,53)-->Ala) revealed morphological change only at the nucleoids. Therefore peptide Leu(49)-Thr(76) appears to primarily target the cytoplasm rather than the membrane of E. coli cells.
منابع مشابه
Evaluation of the Effect of Less Negatively Charged Amino Acid Substitution in Synthetic Tetramer Peptide S3 Derived from Horseshoe Crab Ambocyte on its Antibacterial Properties
Introduction: The study of the effects of synthetic peptides with antibacterial properties can provide more effective antibiotics. This study designed, expressed, and investigated the Sushi 3 tetramer peptide. Subsequently, it was compared in terms of changing antibacterial properties with another Sushi3 tetramer peptide the aspartic acid and proline amino acids of which were replaced with glyc...
متن کاملInteractions of lactoferricin-derived peptides with LPS and antimicrobial activity.
Synthetic peptides derived from human and bovine lactoferricin, as well as tritrpticin sequences, were assayed for antimicrobial activity against wild-type Escherichia coli and LPS mutant strains. Antimicrobial activity was only obtained with peptides derived from the bovine lactoferricin sequence and peptides corresponding to chimeras of human and bovine sequences. None of the peptides corresp...
متن کاملA quantitative analysis of apolipoprotein binding to SR-BI: multiple binding sites for lipid-free and lipid-associated apolipoproteins.
Competitive binding experiments were performed using Y1-BS1 adrenal cells to provide information about the interaction of HDL apolipoproteins with scavenger receptor class B, type I (SR-BI). Exchangeable apolipoproteins apolipoprotein A-I (apoA-I), apoA-II, apoE-2, apoE-3, and apoE-4 as phospholipid complexes bind like HDL3 to SR-BI via their multiple amphipathic alpha-helices; the concentratio...
متن کاملExpression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants
Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...
متن کاملStructural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides.
Recently, attention has been focused on pharmacological treatments that increase HDL cholesterol to prevent coronary artery disease. Despite three decades of extensive research of human apolipoprotein A-I (apoA-I), the major protein component of HDL, the molecular basis for its antiatherogenic and anti-inflammatory functions remain elusive. Another protein component of HDL, apoA-II, has structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 342 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1999